Temperature Dependence of ²H Quadrupole Coupling Constants in ²H₂O and Ionic Motions in Crystalline [M(²H₂O)₆] [SnCl₆] (M:Mg, Ca), Studied by ²H NMR and Neutron Powder Diffraction *

Naohiro Yoshida, Noriko Onoda-Yamamuro, Shin'ichi Ishimaru, Keizo Horiuchia, and Ryuichi Ikeda

Department of Chemistry, University of Tsukuba, Tsukuba 305, Japan a College of Science, University of the Ryukyus, Senbaru, Nishihara 903-01, Okinawa, Japan

Z. Naturforsch. 53a, 473-479 (1998); received October 31, 1997

The temperature dependence of 2H NMR spectra was measured at 130-430 K on $[M(D_2O)_6]$ [SnCl₆] (M: Mg, Ca) (rhombohedral, space group: $R\overline{3}$), and neutron powder diffraction on the Mg salt was performed at room temperature. Based on the accurate orientation of D_2O molecules in an octahedral cation, spectra with a large asymmetry parameter η , observed around 200 K, were explained by a model of 180° flip of water molecules. Another motional narrowing observed above room temperature was assigned to a cationic overall reorientation about the C_3 -axis.

Key words: ²H NMR; Neutron Diffraction; Molecular Motion; Quadrupole Coupling Constant; Spectrum Lineshape.

Reprint requests to Prof. R. Ikeda. E-mail: ikeda@staff.chem.tsukuba.ac.jp